

Constrain the crust and upper mantle structure beneath the equatorial Eastern Pacific Rise from ambient noise and earthquake surface waves

Chao Gao¹, Huaijan Yao^{1*}, Pierre Gouédard², John A Collins³, Jeffrey McGuire³, Robert van der Hilst² 1 Laboratory of Seismology and Physics of Earth's Interior. University of Science and Technology of China

2. Massachusetts Institute of Technology 3. Woods Hole Oceanographic Institution

Email: hivao@ustc.edu.cn

We use about one-year vertical-component broadband data recorded by 28 OBSs deployed at the Quebrada/Discovery/Gofar (QDG) transform faults region on the equatorial East Pacific Rise. We apply ambient noise analysis and earthquake surface wave two-station analysis to measure the interstation phase velocity dispersion curves to investigate the average crustal and upper mantle structure beneath the equatorial Eastern Pacific Rise.

2. Green's Function from Ambient Noise Cross-Correlation

We apply a band-pass filter in four period bands (1-5.5 s, 4.5-10.5 s, 9.5-20.5 s, 19.5-30.5 s) to one-day long data segments (vertical component). Subsequently, we apply one-bit cross-correlation to the filtered data in each period band and the obtained cross-correlation (CF) is filtered again in the same period band. The daily CEs in the four period bands are then stacked to form the broad band daily CEs (between 1 and 30 s period) for the dispersion analysis

We observe both the fundamental mode and the first higher-mode Scholte-Rayleigh waves in CFs in the 1-5 s and 5-10 s period bands. In the 10-20 s and 20-30 s period bands we only observe the fundamental mode Rayleigh waves.

3. Dispersion from Ambient Noise Analysis

We measure all interstation Rayleigh wave fundamental- and the first higher-mode phase and group velocity curves (in the period band 2 - 30 s) using time-variable filtering technique and phase velocity image analysis.

4. Phase Velocity Dispersion from Earthquake Surface Waves

We measure all possible interstation Rayleigh wave fundamental mode phase velocity dispersion curves (in the period band 20 - 100 s) using a two-station (TS) analysis of teleseismic surface waves.

4. Joint Inversion for 1-D Vs Structure

We combine the average phase velocity dispersion data from ambient noise (between 2 - 20 s) and teleseismic surface waves (20 - 100 s), which was then used to invert for the 1-D Vs structure in the crust and upper mantle using a global search neighborhood algorithm (NA) (Yao et al., 2006; Yao et al., 2011).

Nishimura, C. E., Forsyth, D. W., 1989. The anisotropic structure of the upper mantle in the Pacific, Geophy. J., 96, 203-225.

Yao, H., van der Hilst, R.D., de Hoon, M.V., 2006. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis – L phase velocity.

1 Bill, H., water that, K. e., we see that the second s